
hr.J. Heut Muss Transfer. Vol. 35. No. 10.~~. 2611-2629. 1992 0017-9310/92$5.00+0.00 

PrlntedinCreat Britain 0 1992 PergamonPress Ltd 

Evolution theory for optimal control of a Couette 
iceform design model 

R. S. LAFLEUR 

Department of Mechanical and Aeronautical Engineering, 
Clarkson University, Potsdam, NY 13699, U.S.A. 

(Received 11 April 1991 and in,finalform 15 October 1991) 

Abstract-The ‘iceformation’ method is a new technique for designing the shape of low-loss flow fixtures 
and bodies. Optimal selection of the flow and thermal control parameters is based on minimizing energy 
dissipation when the ice/water interface reaches steady state. A theoretical basis for selecting control 
parameters is established. An optimal criterion is derived using a Couette iceform model for a point on 
the ice/water interface and an evolution theory. The evolution process consists of dynamic variation and 
thermodynamic performance evaluation. The paper provides a theoretical foundation for conducting 

iceformation experiments and numerical simulation of analogous design processes. 

1. INTRODUCTION 

A LARGE component of fluids and thermal design is 
the determination of boundary geometry. The shape 
of a device’s boundary largely determines its fluid 

dynamics, drag, heat transfer and thermodynamic 
performance. Any mechanism, natural or human pro- 
duced, which changes the surface geometry also 
designs the shape. The ‘iceformation’ method uses the 
natural process of ice formation as a tool to design a 

flow’s boundary shape [l]. The flow directly alters 
the surface geometry. At the same time the changing 

surface geometry alters the flow. This mechanism can 
be used to design bodies or fixtures that contain com- 
plex flow and heat transfer, but in order to produce a 
useful shape, the natural process must be controlled 
and guided along the desired path of performance 
improvement. 

1.1. Iceformation design feasibility 

Previous work shows the feasibility of the ice- 

formation design idea and provides a basis for study- 
ing ice formation as a design tool. Carlson [2] pro- 

duced and tested cylindrical iceforms for drag 
reduction, but the results were inconclusive. Similarly, 
in traditional ice formation studies, Maksimov [3] and 
Cheng et al. [4] generated iceforms for a cylinder in 

crossflow. Although the drag performance was not 
evaluated, the shapes had features that indicated a 
reduced wake. 

An experimental study by LaFleur [l] highlights 
the feasibility of using iceformation as a design tool 
for diffusers. In testing the hypothesis of loss 
reduction, experimental evidence showed that iceform 
diffusers had lower loss than did equivalent cones of 
the same length and area ratio. Also, a new concept 
diffuser, called a ‘ring’ diffuser, was generated. In 
another study LaFleur and Langston [5] used the 

iceformation method to design a three-dimensional 
contour geometry for a cylinder/flat plate juncture. A 

test contour reduced the horseshoe vortex and wake 

drag by an average of 18%. 
In summary, these studies show the need for a 

theoretical basis for reduction of energy dissipation 

and a connection between resulting geometries and 
specified control parameters. The purpose of this 

work is to establish an optimal design criterion for 
utilizing the ice formation process to design bodies 

and fixtures that are appropriate for complicated flow 
and thermal situations. A theoretical basis for the 

iceformation design tool is derived using an evolution 
theory and a fundamental Couette iceform model. 

1.2. Motioation for the Couette iceform model 

A new theoretical approach should use a fun- 

damental problem as a first step. The Couette iceform 
model provides this first step in developing a theor- 
etical basis for iceformation design. The innovations 

offered in this paper are not overwhelmed by the com- 
plexities of an unsteady three-dimensional design 

problem such as a cylinder/hull juncture [5]. The 
Couette iceform model can be quickly understood. 
The Couette model offers a fundamental regime to test 

the loss reduction hypothesis of iceformation design. 
More complicated flow regimes will be studied in sub- 
sequent investigations. 

To use the iceformation method to design a shape, 
first the cold parent surface must be designed. A pre- 
process procedure yields guidelines for selecting flow 
and thermal control parameters. A preprocess model 
would be useful for designing an iceform apparatus 
by approximating the flow, thermal and geometric 
characteristics for selected ice/water interface points 
such as the point shown in Fig. 1. The point ice 
geometry or experimental conditions are controlled. 
In between the control points, the geometry is sculpted 
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Brinkman number, Pr Ec 

specific heat 
designation function 

Eckert number, = Uz/C( T, - T,,) 

performance functional 
generation function 
film coefficient 

interfdce position 
heat flux 

thermal conductivity 
evolution length 

J, flexible number 
f’ flexible number 

Nusselt number based on the water 
space, f II(S - I)/kw 

Prandtl number, pC/k, 

latent heat of formation 
time 
dimensional temperature 

normal temperature gradient, ZT/Zy 
tangential velocity profile 
normal velocity gradient 
nondimensional velocity 

parent shape normal coordinate. 

NOMENCLATURE 

K 

symbols 

dissipation strength 
water channel width 
total performance indicator 
internal performance indicator 

conductivity ratio, k,./k, 

nondimensional water space, (1 - <) 
nondimensional water space coordinate 
absolute viscosity 
kinematic viscosity 

nondimensional ice space coordinate 
real constraint limit function 
density 

formation rate function 

entropy production 
nondimensional ice temperature, 

(T, - T,)I(T,- 7-r<) 
nondimensional water temperature, 

(TV,- T,)/‘(T,- T,,) 
heat transfer strength 

temperature ratio, T,- T,,/T,,- T,, 

nondimensional interface position, i/6. 

Subscripts and superscripts 
F moving plate boundary 

0 interface boundary 
R cold parent surface boundary 
I ice field 
W water field 

S steady state 
M minimum dissipation 

0 selected pair of parameters 
0 initial value. 

ice formation = mechanism 
iceformation = design method. 

according to the flow patterns and ice interface inter- 
actions similar to a flexible string held at its end points 
[6]. For example, Fig. I indicates the Couette model 
applied to a control point that defines frontal area. 

--I 
Flow 

I 
Enlaraed ooint 

FIG. 1. Ice/water interface point. 

The Couette model of iceformation provides the 

surface shear stress and temperature gradients typical 
of a point on an ice/water interface. Any point on an 
interface in a flow can be modeled as a Couette flow 
provided characteristic velocity and plate spacing can 
be identified. This holds true for a flow with relatively 
large Prandtl number such as water and flows with 
pressure gradients. 

For example, the turbulent boundary layer contains 

a laminar sublayer. Near the boundary, a linear profile 
approximates the velocity profile. The universal tur- 
bulent boundary layer velocity profile indicates 
characteristic velocity and laminar sublayer thickness. 
Bejan [7] showed that the dissipation is concentrated 
in the near wall region. Laminar boundary layers arc 
represented by series solutions. The near wall region 
can be approximated by a linear velocity profile due to 
dominant terms in the series as the wall is approached. 
Even a Couette flow with a pressure gradient can be 
represented by a smaller Couette flow with a varying 
characteristic plate velocity. The Couette model 
approximates the limiting flow field and ice field in 
the near interface region. 

A schematic diagram of the one-dimensional 
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FIG. 2. Iceformation in a Couette flow regime. 

Couette iceform model is shown in Fig. 2. The lower 
stationary plate, called the parent shape, is cooled 
below the freezing point of water ( TR < r,) while the 
moving upper plate is maintained at a temperature 
above the freezing point (TF < r,). The external con- 
straints to the shape design process are the upper plate 
velocity and temperature, as well as the lower plate 
temperature and plate separation distance (6). The 
internal material constraints are water thermal con- 
ductivity, ice conductivity, water viscosity, ice density, 
phase change temperature and latent heat of forma- 
tion. The design mechanism of phase change causes 
movement of the ice surface geometry, which is 
tracked by I: = Z(t). The flow and thermal fields can 
be nondimensionalized in terms of the water and ice 
spaces and the boundary conditions. Appendix A 
summarizes the model assumptions and the well- 
known Aow and thermal solutions. 

1.3. Design evolution strategy 

An evolution theory provides a basis for controlling 
the iceformation design process using the Couette ice- 
form model. Evolution is the process of variation and 
selection and therefore, it must be both dynamic and 
thermodynamic [8, 91. Methods of design are dis- 
tinguished by the techniques for geometric variation 
and performance based selection. 

Traditional design methods have human specified 
variation and selection, and there is a high reliance on 
the designer’s understanding of the flow and intellect 
to produce good variations. In an attempt to quicken 
the design process, some design optimization methods 
have biological or genetic aspects. Eigen [IO] advo- 
cated using a ‘genetic algorithm’ approach to exper- 
imental design of optimal fluid passages. In his study, 
many cycles of random geometric variation and sub- 
sequent performance evaluation (selection) were 
needed for opt~mizatjon. It is interesting to note that 
Eigen’s optimal expansion nozzle result has a number 
of ring-like structures, much like Gilpin’s iceform 
pipes [I I] and LaFleur’s iceform ring diffuser [ 11. 
French [ 121 discussed the institution of natural design 
features into engineering design problems rather than 

simulating geometric variation and selection, and 
showed that this approach is useful for a variety of 
design problems and constraints. 

In contrast to Eigen’s and French’s as well as to 
the traditional approaches, the i~fo~ation method 
utilizes natural forces to perform geometric variations 
while simultaneously evaluating performance. The 
process is controlled and guided along the path of 
performance improvement by human selection of con- 
straints. Figure 3 shows that the design process 
responsibilities are split such that the geometric 
variations are produced by the natural physics and 
the selection of good variants is controlled by the 
designer. 

The loss reduction hypothesis [2, 1, 61 states that 
the natural process of iceformation produces shapes 
of lower energy dissipation. When opposite forces 
driving a process equilibrate, the configuration 
reaches a ‘happy medium’. Steady state and opti- 
mization are similar in that respect [9]. In this paper, 
an evolution theory identifies the difference between 
steady state geometry and the optimum geometry of 
minimum energy dissipation. Then a criterion for the 
selection of experimental flow and thermal parameters 
is formulated such that steady state iceform ge- 
ometries are selected to minimize energy dissipation. 
The ice formation process can be controlled and used 
as a Row and thermal design tool. 

1.4. Theoreticalfoundation and goals 
This paper presents two independent theories of 

the ice formation process : dynamic, which describes 
design variation, and thermodynamic, which 
describes design selection. An evolution theory com- 
bines the variation and selection formulations. The 
theoretical foundation of the iceformation method 
consists of function definitions, control variables and 
equations which lead to satisfaction of the loss 
reduction hypothesis. 

The variation theory describes the interface dy- 
namics utilized for shape variation. The shaping of 
the ice interface is a dynamic process of geometric vari- 
ations caused by a phase change mechanism. For the 
Couette model, the geometry of the ice/water inter- 
face is related to the adjustable specified control par- 
ameters, the Brinkman number Br, a thermal parameter 
8, and time or ((Bv, @,, t). The Brinkman number is 

1 

Shape 
evolution 

/\ 
Variation Selection 

Naturally Human 
produced controlled 

FIG. 3. Splitting evolution. 
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not zero for the Couette iceform model. When steady 
state is reached, 5 + is, and the steady state geometry 
is related to the specified constraints, &(Br, O-,). The 
goal of the variation theory is to obtain explicit 
relationships for &(3r, 0,). 

The selection theory provides a the~odynamic for- 

mulation to judge iceform shape performance. The ice 
formation process contains thermal and flow pro- 

cesses which dissipate energy. Energy dissipation is 

related to the geometry and the specified control par- 

ameters, @(j, Br, 0,). The minimization of energy 
dissipation implicitly provides a set of optimal gc- 

ometries that depend on the flow and thermal par- 
ameters. The goal of the selection theory is to obtain an 

explicit relationship between performance and opti- 
mum geometries in terms of constraints, iM(Br, II,) 

and cP([, Br, O.,). 
The goal of the evolution theory is to establish a 

practical criterion for selecting experimental flow and 
thermal constraints, Br and If,, in order to produce 
steady state geometries that minimize energy dissi- 

pation. This provides a theoretical foundation for 

using ice formation to design low energy dissipation 
bodies and fixtures. 

2. VARIATION THEORY: ICE FORMATION 

DYNAMICS 

The natural process of ice formation actively 
designs fluid dynamic shapes by variation of interface 

geometry with time. Much ttiork has been completed 
describing the nonlinear dynamics of the ice formation 

mechanism (both melting and growing). Yao and 
Prusa [13] provide an extensive review of traditional 

work on the ice formation mechanism, including 
forced convection studies. These studies are useful in 

describing iceform shape variation. 
The rate of formation is described by a well-known 

interface equation which connects the phase change 
with interface heat fluxes using an energy balance 
about the infinitely thin interface. The non- 

dimensional geometry version of the one-dimensional 

interface equation is 

where i z I/S. Stephan [14] used c, the non- 
dimensional liquid space, to track the interface and 
plotted results in terms of (1 - <), the nondimensional 
solid space. Here the nondimensional ice space, <. is 
used instead of 5, because the formation is supported 
by the cooled parent surface and this is where the 
origin of ice growth is located. 

2. I. Heut tram/& strengths 

The heat transfer terms from the ice and water 
phases have an opposite effect on the interface move- 

ment and are classified as ‘opposite design forces’ [ 151 
for the geometry, 5. The ‘strength’ of each phase to 
occupy space is indicated by the bracketed terms ol 
equation (I), and these are defined as positive definite 
quantities called ‘heat transfer strengths’. Utilizing the 
well-known thermal and llow solutions s~lrnrnari~ed 
in Appendix A, the Couette ice heat transfer strength 

for geometric growth is defined by equation (2) 

The water hcdt transfer strength for geometric decay 
is defined, evaluated and stated in terms of the Brink- 

man number in equation (3) 

where the Couette water yields 

Nu,= I+? 1 1 (4) 

To use the Couette iceform model for more com- 
plicated flow and ice fields, the Nusselt number based 

on the water space can be related to heat transfer 
correlations of Nusselt number based on streamwise 

coordinates such as 

The heat transfer strengths may become a function 
of streamwise and cross-stream coordinates and ice 

interface position. 
The heat transfer strengths are opposing design 

forces which result in a steady state. If one strength is 

missing (0, or &), the resulting steady state is ali 
liquid or solid as shown by Stcphan 1141, Gupta and 

Kumar 1161, and Yao and Cherney 1171. 

2.2. Generution,function phase plunr : steady state 

With the rate of formation as a rate of geometric 

change 

the interface equation can be written as a generic 
formation equation 

P I ow I 

0, i 8, 1-i 
(7) 

which can be solved analytically if the heat transfer 
strengths are constant. The heat transfer strength ratio 
is a governing parameter for the ice formation process. 
The fo~atjon rate can be plotted as 

as shown in the mid to lower part of Fig. 4. Figure 4 
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shows that steady state is reached when the heat trans- 
fer strength ratio curves cross the interface position 
axis (zero rate). These steady states are stable in time 
due to the negative slope of the curves. Figure 4 also 
shows that the formation rate is theoretically infinite 
at [ = 0, full water space, and [ = 1, full ice space. 
Another function, the generation function, describes 
the ice formation dynamics without the infinite values. 
The generation function is defined as 

The formation equation (7), can be written in terms 
of the generation function (8) divided by the parent 
surface generation magnitude, (g(0) 1 

s(i) -=l-[ 1,: 
0, [ 1 1 (9) 

The generation function is a transformation of the 
formation rate, and for the Couette iceform model it is 
a linear transformation of geometry, [. The generation 
function forms a phase plane with the interface 
position. Figure 5 shows the generation phase plane 
process lines and steady state vs the heat transfer 
strength ratio. At steady state, c = is, the generation 
function is zero, g([s) = 0. The unique steady states 
appear on the phase diagram (Fig. 5), when lines of 

16- 

14- 

12- 

to- 

6- 

6- 

4- 

constant heat transfer strength ratio &/B, cross the 
g = 0 axis. The Couette icefotm steady states are 
dynamically stable (with time progression) due to the 
negative slope of the heat transfer strength ratio lines 
on the phase plane. The steady state geometry can be 
stated in terms of the heat transfer strength ratio by 
solving for the root of g(&) = 0 as 

(10) 

The heat transfer strength ratio is a governing par- 
ameter and can be stated for any flow and Couette 
flow respectively as 

-= ~0, Nu, = idIT 
0, 

(11) 

The flow and thermal control parameters are defined 
as follows : 

kw TF - T,, 
lc_=p B,E-. 

I To--T, 

Br E ~(r”;: T ) = Pr EC. (12) 
w F 0 

The Nusselt number, based on the fluid space, can be 
used to apply the model to include convection effects. 

FIG. 4. Formation rate and energy dissipation vs interface position. 
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FIG. 5. Generation function phase plane. 

By equations (IO)-(12), the steady state geometry is 
connected to the specification of external constraints, 

O,, Br or TF, TR, Ub and the material constraint, 
K. The 0, definition is the inverse of traditional ice 
formation studies such as Seki et al. [ 181, Hirata and 
Matsuzawa [19], and Shibani and Ozisik [ZO]. The 

correlations in these papers have the convenient form 
of Re O;, where n > 0, if 0, is used instead of 6t, or 0. 
Use of the 0, definition is justified because the design 

process and fluid/interface interaction are the 
phenomena of concern rather than just solidification. 
Also, the primary thermal control parameter in expcr- 

iments, the water temperature, TF, is in the numerator. 
Thus, as will be shown later, the use of 0, is more 

convenient. 
In summary, the variation theory of the Couette 

iceform model establishes explicit expressions for a 
relationship between ice geometry and the flow and 

thermal parameters as &(Br, 0,). The steady state 
geometry is controlled by the flow and thermal par- 

ameters. Equations (9)-( II) will be used later in the 
evolution theory. 

3. SELECTION THEORY: THERMODYNAMIC 

PERFORMANCE 

A measure of ‘goodness’ is needed to use ice for- 
mation as a design tool. The performance of the ice- 
form shape is determined by the thermodynamic 
behavior of both the flow and thermal fields in the 
water and ice spaces. Formulation of energy dis- 
sipation as a performance indicator, @, or per- 
formance functional, f, allows the determination of 
an optimum geometry or design improvement. The 
optimum geometry minimizes flow and thermal 
energy dissipation and it depends on specified flow 
and thermal constraints. But the optimum geometry 
is not necessarily the same as the steady state 

geometry, and this leads to the evolution theory fol 
constraint specification. 

The energy dissipation performance functional is 
derived in terms of irreversible thermodynamics in the 
flow and thermal fields. The well-known quantity 01’ 
entropy production can be formulated, as a special 

case, in terms of viscous dissipation and heat transfer 
as de Groot and Mazur [21], and Bejan 17, 221 have 
shown. Using entropy production as a guide to design 

is called ‘thermodynamic design’ (Bejan [23]). In the 
present study, the entropy production functional is 
made flexible and is arbitrarily stated as an energy 
dissipation functional. Using the calculus of vari- 
ations the functional is consistent with the first law of 

thermodynamics by independent variation of tem- 
perature under the equation of motion constraint. The 

energy dissipation performance functional is derived 
in Appendix B as 

The formulation of competing viscous dissipation and 
thermal dissipation irreversibilities produces a convex 
perfomlance functional 1241 which can be optimized. 

For instance, Jany and Bejan f25] have formulated 
performance functionais for fluids and heat transfer 
problems, and solved for optimum geometries for s 
variety of configurations. Little has been done to 
evaluate energy dissipation characteristics of ice for- 
mation. Shape sensitivity was connected to phase 
change by Merit [X] based on previous work by Siegel 
[27]. However, Merit used the objective of heat flux 
or deviation from an isotherm instead of energy dis- 
sipation. Merit’s geometric variations were discrete 
and arbitrary. The present work utilizes the natural 
and continuous variations of iceformation for gco- 
metric variations. 



Control of a Couette iceform model 2623 

3.1. Energy dissipation strengths 3.2. Designation function phase plane : optimization 

Temperature variation occurs due to variation in 
the ice/water interface geometry and, subsequently, 
the steady state geometry is varied by variation of the 
external constraints 6, and Br. The energy dissipation 
performance integral can be split at the interface iso- 
therm and nondimensionalized to reveal the geometric 
dependence, Q(i), in a performance equation 

The curves of constant dissipation strength ratio, 
/&/fi, = constant, have minimums corresponding to 
the optimum geometries of minimum energy dissi- 
pation, [ = iM. Optimums are designated by the slope 
of the energy dissipation curves. The slope with the 
[ = 0 and [ = 1 singularities removed is defined as the 
designation function 

(19) &!+!!!Y 
i 1-i 

(14) 

where the p terms are defined by equations (15) and 
(16) to be the ‘energy dissipation strengths’ 

/?, G (15) 

The performance equation can be written in terms 
of the energy dissipation strength ratio 

(17) 

The energy dissipation strength ratio is a governing 

lar in form to the formation rate equation (7) and is 
plotted as 

parameter and is evaluated by the integrals of equa- 
tions (15) and (16). The performance equation is simi- 

The designation function parallels the generation 
function of equation (8). The designation equation, 
normalized by the parent surface designation mag- 
nitude, Id(O) 1, is 

d(i)_Pw * 
BI 

-El -(l --iI’ (20) 

Figure 6 shows designation function phase plane as 
curves of 

with fiw/a, = constant. When the designation func- 
tion is zero, the ice geometry minimizes flow and ther- 
mal energy dissipation. Figure 6 shows optimum ice 
geometries that are thermodynamically stable mini- 
mums of energy dissipation due to the positive slope 
of the curves. These optimum geometries can be ex- 
pressed in terms of the dissipation strength ratio by 
finding the root of d(iM) = 0. For the Couette 
iceforrn, the root within 0 < i, < 1 is _ .., 

(21) 

where the dissipation strength ratio, h/B,, is given 
where the dissipation strength ratio parameter plays by equation (18). 

a parallel role to the heat transfer strength ratio (see In summary, the selection theory of the Couette 
the upper region of Fig. 4). Figure 4 shows that the iceform model establishes explicit expressions for 

energy dissipation curves of constant dissipation [,(Br, 0,) and a([, Br, 0,). The performance and 
strength ratio have unique minimums. This means optimum geometry are controlled by the flow and 
that minimum energy dissipation ice geometries are thermal parameters. Equations (18) and (21) will be 

obtainable. The minimums are stable due to positive used in the evolution theory. 

curvatures near the zero slope. 
Using the velocity and temperature field solutions 

given in Appendix A yields a specific relationship 
4. EVOLUTIONARY DESIGN MODEL 

between dissipation strength ratio and the flow and The variation and selection formulations yield inde- 
thermal control parameters as pendent but parallel variables and equations, such as 

:f=&[I+Br-g]. (18) 

the generation and designation functions, the heat 
transfer strengths and energy dissipation strengths. 
The differences can be examined and controlled. 

The Brinkman number is not zero in the Couette 4.1. The difference between steady state and minimum 
iceform design model. For application of the Couette energy dissipation 
model to more complicated flows, the Brinkman num- The iceform geometry reaches a steady state value 
ber can be replaced by the Nusselt number based on corresponding to the heat transfer strength ratio par- 
the water space using equation (4). ameter, 0,j&, as stated in equation (10). The mini- 
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Dissipation strength ratio, x 

-I 

FIG. 6. Designation function phase plane. 

mum energy dissipation design of the geometry is 

expressed in terms of the energy dissipation strength 
ratio parameter, /&/fl,, as stated in equation (21). 
Since 0,/C?, is not necessarily equal to j(/3W/pI) the 
obtained steady state geometry is not necessarily equal 
to the optimum geometry. 

Stationary states do not necessarily correspond to 
minimum entropy production (de Groot and Mazur 
[21]), and in this nonequilibrium phenomenon, the 
objective functional, CD, can be stationary in time for 
two reasons. Using a chain rule and assuming fast 
relaxation (N/8t = 0) and fixed constraints, the time 
rate of change of performance is 

A stationary objective functional can be provided by 
cl = 0 or .q = 0. However, because the designation and 
generation functions arc two independent functions, 
a stationary @ in time does not necessarily correspond 
to optimum geometry. There are two degrees of free- 
dom in the evolution theory. 

In the experiment there are two degrees of freedom 
to specify, the thermal and flow control parameters. 
These are related to the two degrees of freedom that 
persist throughout this development, see Table 1. 

The difference between the steady state and opti- 
mum geometries can be measured using the desig- 
nation function as a ‘yardstick’. The difference 

Table 1. 

1 st degree of freedom 2nd degree of freedom 
- _____.._.--- 

Form Function 
Design rate P Performance Q 
Steady state is Optimum CM 

Q&A Avial 
OT Br or Nut 

-.- 

between steady state and optimum state is a measur- 
able length and from this, the evolution length is 
defined as 

where d(0) is the parent shape designation. Since 
d&,,,) = 0 and id(O)1 = fi,. the evolution length can be 
explicitly written as 

or in terms of the strength ratios as 

The obtained steady state geometry is the optimum 
geometry if L = 0. This desirable condition can be 
specified and the corresponding flow and thermal par- 
ameters can be solved. This leads to an inverse prob- 
lem. 

4.2. Inrerse problem : experimental parameter speci- 

fication 

The iceformation design process is controlled by 
two degrees of freedom, Brand 0,. The goal of steady 
state design optimization, L = 0, is approached by 
specification of the experimental parameters. This is 
known as an inverse problem in which an interior 
solution is given (L = 0 and is) and the corresponding 
flow and thermal boundary conditions are sought. 
For instance, Burggraf 1281 solved inverse conduction 
problems using series expansions. Additionally, 
Zabaras et al. [29] solved an inverse one-dimensional 
heat transfer/phase change problem (known as a 
Stephan problem). The inverse problem presented 
here contains the unknowns of thermal and flow 
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FIG. 7. Evolution length vs constraints. 

boundary conditions on the upper plate given two 
other specifications. 

The inverse problem is solved by stating the two 
experimental degrees of freedom, 0, and Br, in terms 
of the two design and performance degrees of 
freedom, 6,/f?, and &//I,. After much algebra (using 
equations (11) and (18)) 

Br = ___ (26) 

and 

where 

*=\i(l-K(;tJ$). (28) 

A constraint in the design technique arises due to the 
necessity of R being a real number. This requires that 

(29) 

or the largest value of the evolution length be bounded 

(30) 

This is not a problem for fluid/solid media where 
0 < K < 1. In these cases, the optimum geometry at 
steady state, L = 0, is obtainable by selection of exper- 
imental constraints from a nomograph construction 
[30] of equations (lo), (21), (26) and (30), as shown 
in Fig. 7. Figure 7 shows an example construction of 

the evolution length phase plane in terms of the inverse 
equations given above. 

The conductivity ratio is an important quantity for 
the optimization goal. Many sources were reviewed 
to calculate K for ice/water phase change. The value 
used here, K = 0.27, was selected from a set of ten 
different values ; therefore, the theoretical optimum 
of minimum energy dissipation is obtainable in the 
Couette iceform design model. Figure 7 shows a con- 
ductivity ratio constraint derived from equation (29). 
This shows that the iceform evolution is not con- 
strained from reaching the optimal steady state goal. 
An example of this fact is shown in the flat plate 
iceformation paper following this theoretical model. 

5. SUMMARY AND DISCUSSION 

The iceformation evolution is scientifically con- 
trolled while the formation of ice is a natural process. 
The ice formation process generates a geometry in real 
time and reaches a steady state. In this real process, 
the changes from lo to is occur by the forces of nature. 
Conversely, the evolution process, which is a stepwise 
phenomenon, is the result of human-controlled 
change of experimental parameters between gen- 
erations of the geometry. The motivation for exper- 
imental condition changes in a harnessed natural 
design process [I] is provided by the evolution length 
value stated in equations (23), (24) or (25). 

5.1. Two selection degrees of freedom and closure 
The selection degrees of freedom in the design evol- 

ution are found by balancing selection variables with 
the number of equations. The number of relevant 
quantities in the evolution theory is ten, is, CM, 8,/B,, 
/I,,,//&, &, Br, L, !A, TF and U,. The evolutionary 
design theory for the Couette iceform model can be 



summarized by an outline of eight multivariable 
(some nonlinear) equations 

Twrr degrees of freedom arise because there are ten 
quantities linked mathematically by tight equations. 
The system of equations should be determinant when 
two selections are made and the eight equations are 
used. However, the nonlinear equations may prevent. 
closure. 

In any case of~ceformat~on~ two degrees of Freedom 
must be se&ted to controf the evolution and gen- 
eration processes. This is called n preprocess deter- 
mination of the experimental parameters. Two quan- 
tities can be selected from the Couette iceform 
theoretical variables or, t&/B,, /&/fl,. Br or L, pro- 
vided that R is a real number. Selection substitutes 
appear as pairs; however, both caanof be selected, 
There are three snbst~tnt~s 

cl@&. 

There are three resftictions t5 the selection of a pair. 
These restrictions can be sh5wn by constmcting a 
game (controf theory) and ~de~t~f~~~ selected pairs 
which lead to underdeterminance. These pairs are 

Br G3 L. 

S.?;. Practical considerations 

Depending on the design problem, different prc- 
pro~css selections may be considered. For example, in 
a typical problem the optimum geometry at a certain 
Reynolds number is desired. This would lead to the 
selection Of a ti. mfue and L = 0. This case woutd 
lead to BTM = MB and a corresponding thermal con- 
trol vaiue T,. ff TF or UP is selected, the process can 
be reversed to determine t.he other parameters. Some 
additional experimental freedom is provided if the 
parent surface temperature, rR, can be adjusted and 
controlled. This has a direct influence on the range of 
the Water temperature, r,, finr particular geometries. 
is7 and Auid velocities. L!iz. 

The Couette keform regime is a model for locai ice 
formation of complicated shapes, and use of the 
Couette iceform model approximates the desired 
steady state geometry for local points. In the experw 
iment, the parent shape geometry and cooling load 
arc derived from local models. The theory allows the 
input or cafculatian of a tocal NusseIt number based 
on the fluid space using equation (4)~ Therefore, the 
Couettc iceform model provides a basis for design- 
jng two- and thrc~-d~mens~o~~a~ parent surfaces using 
the one-dimensional Couette iceformation equations, 
Once the apparatus is constructed, the Couettc 
iceform model of the interface point is used to find and 
specify global experimental conditions, the flow and 
thermal parameters, that will produce desired geo- 
metric and ~~rfor~~ance resutts. 

The evolution theory was developed for a fun- 
damental Couette iceform model. The theory for- 
mulates a design tool based on a one-dimensional 
iceformation model. The iceform geometry is related 
to specified BOW and thermal ~ar3meters. Optimum 
g~o~~ctr~e~ of n~~njmum energy d~ss~~a~on are 
Qbtatned for cerh3 ~5~~~~~tjO~~ Of exptimental 

parameters. 
The use of iceformation as a flow and thermal 

design tool requires the selection of thermal and flow 
boundary conditions as constraints, and these bound- 
ary constraints are hnked to performance and 
geom&ry. A change in the two degrees of freedom of 
the constraints res_&s in an evolution process. The 
goal of the e~~~u~j~nary design process is to seIect the 
flow and thermal parameters such that the steady srate 
geometry is an optimum geometry. 

To use the Couette icefortn model for more com- 
plicated parent surfaces and flow fields, the heat trans- 
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fer and dissipation strengths must be functions of the 
ice/water interface position and the interface tan- 
gential coordinates. Since a complex flow requires a 
complex geometry, the strength ratio functions pro- 
duce geometry morphology. This paper is followed by 
an example of the Couette iceform model on two- 
dimensional iceformation over a cold flat plate in a 
Blasius type boundary layer flow. 

Further research on the iceformation design 
method should include experimental survey of differ- 
ent flow regimes. The iceformation method can be 
broadened by studying interface mehing in a high 
speed wind tunnel. The geometry and perfo~ance 
monitored over time will indicate the history of the 
iceformation process. Computational studies that 
simulate the iceformation process can be compared to 
traditional optimization techniques to identify simi- 
larities and differences. 
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(3) small density change between phases and negligible 
buoyancy effects 

(4) unifo~ity of material properties in each phase 
(5) ice grows on the lower plate (see Fig. 2) 
(6) the interface geometry, I, remains fiat 
(7) all field variables near the interface point are a function 

of the parent surface normal coordinate, ,v. 

The ice and water field solutions are summarized as 
follows : 

Ice space r,(G) = + where 

(31) 

Water space o(n) = C: where 

and 

where the nondimensional fluid temperature and the Brink- 
man number are defined by 

APPENDIX B. ADJUSTABLE PERFORMANCE 
FUNCTIONAL DERIVATION 

An arbitrary measure of performance is adopted as a basis 
of comparison between geometries. The performance of a 
geometry is governed by the Ruid and thermal field orien- 
tation. The performance indicator must be consistent with 
the conservation laws of energy and momentum, and there- 
fore, is formulated to correspond to the energy equation 

under the constraint of the equation of motion (quasi-steady 
formation) 

The volumetric entropy production is an indicator of irre- 
versibilities and performance of a design However, the 
entropy production contains inverse temperature terms and 
is complicated to integrate. Many varied techniques are used 
to rectify this difficulty. One technique is to assume that the 
inverse temperature is equivalent to a reservoir (constant) 
temperature. Similarly, Bejan [22] assumed that the inverse 
temperature spatial variation is small in terms of absolute 
temperature, and a reference (constant) temperature is used. 
Another technique is to define the inverse temperature as 
‘coldness’ (Ahmadi [31] and Coleman and No11 1321). The 
coldness is a natural variable in entropy space and produces 
the~odynamic description in terms of Massieu functions 
(Cailen [33]). In the present study, the entropy production 
functional is multiplied by a positive definite weighting func- 
tion, T”, which preserves the second law inequality. 

Since there are two fields, Tand a, and two separate terms 
of the energy equation (39, the adopted performance func- 
tional contains two flexible coefficients, n and m. This is 
sufficient to handle possible mixed terms which may arise in 
the formulation. The total performance functional is for- 
mulated as the integral ofentropy production (irreversibility) 
multiplied by temperature raised to the power n 

where the entropy production rate for the Couette iceform 
contains both thermal and viscous dissipation as 

and the adjustable (m) phenomenological relation for heat 
flux is 

dT du 
J,(m) = -k ;iy -mupLG. 

However. the total performance based on entropy pro- 
duction includes input boundary effects due to the moving 
plate model. The internal performance indicator due to ther- 
mal and fluid orientation is the total ~rforman~ minus the 
moving plate input (a base value) 

du 
Q,=@,-UrT;-‘P Gi,_h= ” 0 f oT’ d, 

Furthermore, the boundary input causes effects within the 
volume 

By algebraic and differential manipulation and use of the 
equation of motion constraint, the performance indicator 
due to infernat orientation of the thermo-fluid is 

Q= ‘f(~,T,Ti,,u,u,,,m,njdv 
s 

(42) 
0 

where the tlexibie performance functional is 

,f= kT”-’ $ :fuTnm2p$%~.(m-~+1). 
0 

(43) 

The coefficients, n and m, are determined by equating the 
Euler-Lagrange equation for f to the governing energy 
equation. The Euler-Lagrange equation for the performance 
functional, f, is obtained using the variation of temperature, 
fiT, and the equation of motion constraint 

After substituting f and manipulating, the Euler-Lagrange 
equation becomes 

The two residual terms on the right become zero by adjust- 
ment of n and m. The special values of n = 2 and m = 3 
produce a performance indicator consistent with con- 
servation of energy (equation (35)). The temperature vari- 
ation, 6T, corresponds to the variations in geometry, St, 
and therefore, the performance indicator is a function of 
geometry, @tQ 
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This performance functional, multiplied by f, is the intro- the functional by a constant, 4. Therefore, the performance 
ductory calculus of variations functional of energy dis- indicator (47), is referred to as energy dissipation 
sipation for one-dimensional heat conduction when u = 0. 
Since the performance indicator measures the relative ‘good- 
ness’ of the geometric variations, it is permissible to multiply 

(D(i) =$[fk($+up~$]dg. (47) 

THEORIE DE L’EVOLUTION POUR LE CONTROLE OPTIMAL DUN MODELE 
COUETTE DE FORMATION DE GLACE 

R&urn&La methode ‘formation de glace’ est une nouvelle technique pour concevoir la forme, a faible 
perte de charge, des fixations et des corps. La selection optimale des parametres de contrdle dynamiques 
et thermiques est basee sur la minimisation de la dissipation d’energie quand l’interface glace/eau atteint 
un &tat stationnaire. Une bas-theorique est etablie pour selectionner les parametres de controle. Un critere 
optimal est obtenu en utilisant le modele Couette de formation de glace, pour un point sur l’interface 
glace/eau et une theorie d’evolution. Le mecanisme d’evolution consiste en l’evaluation de la variation 
dynamique et de la performance thermodynamique. On fournit une base theorique pour conduire les 

experiences de formation de glace et la simulation numerique des mecanismes analogues de design. 

EVOLUTIONSTHEORIE FUR DIE OPTIMALE BEEINFLUSSUNG EINES 
GESTALTUNGSMODELLS AUS EIS 

Zusammenfassung-Die “Eisbildungs”-Methode is eine neue Technik fur die Gestaltung von Gegen- 
standen mit geringem Striimungswiderstand. Die optimale Auswahl der Parameter fur die Beeinflussung 
der Striimung und des Wlrmeiibergangs beruht auf einer Minimierung der Dissipationsenergie, wenn die 
Eis/Wassergrenzfllche stationlren Zustand erreicht hat. Fur die Wahl der Parameter wird eine theoretische 
Grundlage geschaffen. Unter Verwendung eines Couette Eisform-Modells fiir einen Punkt an der Eis/Was- 
sergrenzfllche und einer Evolutionstheorie ergibt sich ein optimales Kriterium. Der EvolutionsprozeB 
besteht aus einer dynamischen Variation und der Auswertung des thermodynamischen Verhaltens. Ab- 
schlieBend wird eine theoretische Grundlage fur die Ausfiihrung von Eisbildungsexperimenten und fiir die 

numerische Simulation analoger Gestaltungsprozesse gegeben. 

HCI-IOJIbSOBAHkiE 3BOJIIOHHOHHO~ TEOPHH AJI5I OI-ITMMAJIbHOFO 
PEI-YJIBPOBAHMR MOAEJIH KY3TA I-IPM OEPABOBAHHH JIb&A 

hllOT~lUifl--MeTOn “nb~OO6pa30BaHUK" ~~OCTaB,I,I~T co6ofi HOBbIk cnocod HClIOnb3y~iW& n&Xi 

pa3pa6orr,e @opbrbi rpennemiii n Ten n cnyrarx re~emiii C HH~KHMW noreprihni. B ocnorie onrriMa.ab- 
HOrO ebr6opa napaMerpon TeYeHHR H Tel-IJlOBOii perynnum JICIKHT MmMB3a~Hx paccenmin 3HeprWH 
npn nocrnmenmi rpamineii pasnena ne@ona craunotiapnoro cocromni~. Ycrarioenen reopermrecroiii 
npsemin eu6opa onpenenamnnix napahrerporr. OnrahranbHblfi tcprirepnii nonylee c ncnonb30nanneh4 
hronenn KyJTTa n.nn T~YKH Ha rpannne pa3nena nen - Bona. WccnenyeMbrii 3~on10wio~~blfi upowcc 
no3aonner ouennrb nmrahrnreero3e ri3h5ettenne H repMominaM3irecmie xaparrepncrmot. Aarorcn reope- 
TWYeCKHe OCHOBbI lIpOBeAeHSiX 3KClIepHMeHTOB lT0 nbAOO6&XX30BWilO H SHCJleHHOrO MOAeJlHpOBaliliSl 


